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A Coarse-to-Fine Framework for
Automatic Video Unscreen

Anyi Rao, Linning Xu, Zhizhong Li, Qingqiu Huang, Zhanghui Kuang, Wayne Zhang, and Dahua Lin

Abstract—Video unscreen, a technique to extract foreground
from given videos, has been playing an important role in today’s
video production pipeline. Existing systems developed for this
purpose which mainly rely on video segmentation or video
matting, either suffer from quality deficiencies or require tedious
manual annotations. In this work, we aim to develop a fully
automatic video unscreen framework that is able to obtain
high-quality foreground extraction without the need of human
intervention in a controlled environment. Our framework adopts
a coarse-to-fine strategy, where the obtained background estimate
given an initial mask prediction in turn helps the refinement
of the mask by the alpha composition equation. We conducted
experiments on two datasets, 1) the Adobe’s Synthetic-Composite
dataset, and 2) DramaStudio, our newly collected large-scale
green screen video matting dataset, exhibiting the controlled
environments. The results show that the proposed framework
outperforms existing algorithms and commercial software, both
quantitatively and qualitatively. We also demonstrate its utility
in person replacement in videos, which can further support a
variety of video editing applications.

Index Terms—Automatic video unscreen; amateur green screen
matting, background estimation.

I. INTRODUCTION

Video unscreen has been an indispensable part of modern
video production pipelines. Recording a video on the spot is
often a highly costly activity. Film producers thus may resort
to more affordable approaches, e.g., recording the video in
a controlled environment and then “migrate” the foreground
to the desired scene during post-production. In recent years,
with the thriving of online video services, video unscreen
techniques have seen demands emerging in new domains,
e.g., the production of user-generated content and video con-
ferencing. As the professional video editing procedures are
overly complicated and cumbersome for an ordinary user,
and lengthy human intervention is simply infeasible in the
online service settings, these applications lead to a significant
challenge—they require the system to work in a completely
automated manner. We note that, while there has been plenty
of sophisticated image unscreen tools [1], video unscreen
remains relatively new [2], [3], and is rarely possible to be
fully automatic. In this work, we focus on a controlled yet
common scenario, where the unscreen target is positioned
in front of a relatively clean background. To be practical
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Fig. 1: Automatic video unscreen procedure comparison among (a)
segmentation, (b) matting, and (c) our unified framework. Each node
represents one variable in the composition equation. The unused
nodes are not colored. The dashed lines indicate the newly established
information flow when compared from left to right. Each video frame
Ct is softly blended by the foreground Ft and the background Bt,
controlled by the alpha-mask αt. A brief procedure of the proposed
coarse-to-fine framework is illustrated with green circles.

and applicable to our daily life environments, the developed
method should be less sensitive to nonuniform lighting, and
be robust to noisy backgrounds, eliminating the requirement
for a professional movie studio.

Existing video unscreen techniques primarily rely on video
segmentation or video matting. However, both approaches are
limited. The techniques based on foreground segmentation
lack the capability of preserving fine details [4], e.g., human
joints and hairs. Video matting relaxes the binary partition
assumption into an alpha composition model [5],

Ct = αt ⊗ Ft + (1− αt)⊗Bt, (1)

where each video frame Ct is considered as a soft blending of
the foreground Ft and the background Bt, controlled by the
alpha-mask αt. Despite the fact that matting techniques [6]–
[8] have shown their capability of producing results of sub-
stantially higher quality, their application in the context of
video unscreen faces a significant difficulty, namely, they
require a trimap for each frame to be provided by the user.
Recent works [9], [10] attempted to mitigate this problem by
requiring the background instead of the trimaps. This way still
faces practical difficulties in real-world applications, where the
backgrounds are hard to acquire.

In this work, we propose an automatic video unscreen
framework aiming to tackle the challenges mentioned above.
This framework adopts the alpha-composition model at its
core, delivering high-quality results while eliminating the
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need for human intervention—users are no longer required to
provide neither the trimaps nor the background. The key idea
is to untie the coupling between the background and alpha
matte, turning it into a coarse-to-fine refinement process. As
illustrated in Figure 1, the initial prediction of the alpha mask
is then used in estimating the background, which in turn helps
further refinement of the mask. In this way, the framework
achieves both desiderata at the same time, namely high-quality
output and free of user intervention.

To test the effectiveness of the proposed techniques in com-
parison with others, we construct DramaStudio, a large-scale
dataset comprised of real-world video recorded from drama
studios with foreground masks annotated by professionals.
This dataset contains 420 videos with over 334K annotated
frames, which covers around several hundred annotated peo-
ple. On both DramaStudio and Adobe’s Synthetic-Composite
dataset, the proposed framework outperforms mainstream
methods under the background-free and trimap-free setting.
Our empirical studies also show that the refinement process
can effectively cope with the flaws in the trimap and back-
ground estimates, endowing the system with the robustness
needed in real-world applications.

Overall, our contributions lie in two aspects: 1) We develop
an automatic video unscreen framework that can produce high-
quality foreground extraction without the provision of trimaps
and backgrounds. This is accomplished by the coarse-to-fine
refinement process built on top of the alpha composition
model. 2) We construct DramaStudio, which provides a large-
scale collection of frames with high-quality mask annotations.

II. RELATED WORK

Video Segmentation. Segmentation can be viewed as a rough
solution to automatic video unscreen. Per-frame image-based
segmentation [11]–[19] is not ideal for videos as temporal
constraints can be violated. Video segmentation improves
accuracy by exploiting the temporal relations in the video
sequence with propagation and sampling. They can be cate-
gorized into two branches: unsupervised and semi-supervised
methods. In the semi-supervised setting, ground-truth masks
are assumed to be given in the first frame. Some works [20]–
[23] propagate flow, mask or semantic labels to unlabeled
frames. Others like FeelVos [24] and STM [25] use a match-
ing mechanism or memory networks to fuse information of
multiple frames to improve the segmentation accuracy. Unsu-
pervised video segmentation cannot rely on any supervision
at inference time. Many approaches take advantage of the
motion patterns of objects as complementary cues [26]–[29],
which take a two-stream network to process the RGB image
and the corresponding optical flow separately and fuse the
results in the end. To avoid the expensive computation of
optical flow, some works [30]–[33] utilize higher-order spatial
and temporal relations between video frames to bring more
comprehensive content understanding. Other approaches [34],
[35] directly feed consecutive frames into the networks to
learn rich semantic relations through cross-frame correlations.
However, these video-based segmentation methods are prone
to accumulate errors calling for a new system with high-
accuracy performance and robustness on each frame.

As the performance of segmentation model backbones be-
comes saturated, improvements on standard benchmarks such
as DAVIS [36], Cityscapes [37] and YouTube-VOS [38] are
stagnated. The research focus is shifting to improving the
efficiency of video segmentation [39]. Xu et al [40] use an
adaptive keyframe selection policy, and Jain et al [41] fuse
predictions of the keyframe from a large model and other
frames from a compact model. Liu et al [4] observe that
keyframe based methods might produce different qualities for
keyframes and other frames, so they impose the temporal
consistency constraint during training and apply a per-frame
prediction scheme in inference. In this work, segmentation
serves as the initialization of a rough foreground. We show
that even lightweight networks in this step can yield high-
quality foreground at the end, making the video unscreen
system practically applicable.

Video Matting. With the help of trimaps, video matting
predicts a detailed alpha matte which can be used to recover
the mixing factor of foreground and background [42]. Similar
to video segmentation, traditional video matting methods [43],
[44] impose temporal coherency by propagation and sampling.
There is barely any new video matting in the deep learning era,
as is embodied by the fact that methods tested on the bench-
mark [45] are basically image-based. User-provided trimaps
are important for both conventional, non-learning based meth-
ods [46]–[48], and learning-based methods [6], [49], [50]. To
further improve the alpha matte prediction, IM [7] designs
an index-guided upsampling, CAM [51] predicts both the
alpha matte and the foreground, and FBAM [8] predicts the
alpha matte, foreground, and background simultaneously. They
achieve SOTA performances with high-quality trimap inputs,
but they are not robust to faulty user-generated trimaps [9].

To make the system automatic, researchers consider using
video segmentation to generate rough trimaps. We note that
these works are mainly human-focused, ranging from portrait
matting [52], [53] to whole body matting [9], [54]–[57].
However, they tend to fail in general daily-life scenarios
when people are interacting with objects, e.g., people wearing
accessories, sloppy outfits, or holding papers. Our proposed
system is able to handle these complicated settings. What’s
more, it can also output the background as a byproduct to
facilitate further applications such as person replacement.

Video Completion. Video inpainting aims to fill the missing
regions in a video sequence with both spatial and temporal
consistency. It recovers the background video given the fore-
ground mask from each frame. Traditional methods usually
complete regions by patch matching in 3D [58] and 2D [59],
[60]. Deep neural networks combine 3D and 2D convolutions
to learn how to collect information from the reference frames
to generate the missing contents. Several works use 3D/2D
CNN [61], [62] or transformer [63] for feature extraction and
content reconstruction but are extremely memory-consuming.
Flow-based methods [64], [65] employ optical flow to guide
the inpainting and fill the remaining pixels with pre-trained
image completion models. Most recently, Ke et al [66] include
occlusion awareness and Ouyang et al [67] apply internal
learning to improve performance. Different from the aforemen-
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tioned methods, our framework targets to extract foreground
from its background, which faces more challenges to handle
the dynamic motion of the foreground, while the background
only servers as a byproduct to help the unscreen.

III. AUTOMATIC VIDEO UNSCREEN

Our video unscreen system is both trimap-free and
background-free (See Figure 2 for the illustrated pipeline).
Recall the composition equation (1), where the observed color
image of the t-th frame Ct is composed of the unknown
foreground Ft, background Bt and alpha matte αt. Our goal
is to estimate the alpha foreground αt ⊗ Ft. We iteratively
estimate all these variables at each timestamp. The system
starts from a rough mask predicted by segmentation (for
t = 1) or binarized from last-frame prediction (for t > 1).
It then refines the alpha foreground by fusing high-level
semantic information from coarse prediction and low-level
spatial information from background prediction. Finally, it
obtains the fine-grained alpha foreground using Equation (1).
In this process, modules are complementary to each other and
the whole pipeline achieves a promising performance with
lightweight components.

In the following, we detail three main modules: 1) Coarse
prediction. It predicts a coarse foreground based on image
segmentation and matting, containing the foreground seman-
tics learned from massive data. 2) Background estimation.
This part reconstructs the background by inpainting or GMM,
which utilizes the temporal and spatial constraints. 3) Final
prediction with ensembled masks. It generates a fine-grained
foreground based on the coarse foreground and the recon-
structed background.

A. Coarse Prediction

Initial Segmentation. Suppose a video V in resolution w×h
has n frames V = {C1, C2, · · · , Cn}. At the first timestamp,
the initial binary mask M seg

1 ∈ Rw×h for C1 is obtained from a
segmentation network (Deeplab v3+ [11] in our experiments).
Initial masks for later frames Ct, t > 1 come from the bina-
rization of the previous frame’s final alpha matte prediction
αt−1 ∈ Rw×h. Note that the video clips we dealt with are
assumed to be single-shot. Multiple-shot videos are cut into
single-shot videos with shot detection [68]–[70].
Connected Area Filtering. To reduce noise in the initial
segmentation mask M seg

t , we use contour detection [71] to
detect all connected areas {O1

t , · · · ,Oi
t} in the foreground

and apply noise filtering. Each connected area is represented
as a binary mask where the value is 1 inside the area and
0 outside. We utilize a saliency score St,i to encourage that
larger objects get higher scores and small noisy points get
lower scores.

St,i =

∑w
x

∑h
y Oi

t

w × h
, (2)

where
∑w

x

∑h
y sums over spatial dimensions. The mask after

connected area filtering is

Mfilt
t =M seg

t ⊗

(∑
i

γiOi
t

)
, (3)

where γi = 1 if St,i > λ , and γi = 0 otherwise, λ is a
pre-defined hyperparameter.
Trimap Free Matting. Referring to the auto trimap generation
procedure in [9], we dilate and erode the mask and take the
inconsistent region between the dilated and eroded masks as
unknown in the trimap. Then we apply a matting network and
get a coarse mask M coar

t . We adopt DIM [6], a variant of
UNet [72] here. It is a relatively small network, which aligns
our motivation of using a series of lightweight modules in our
framework to show the effectiveness of this system design. We
do not require each module to use the SOTA models on single
tasks (which always rely on deeper networks or more complex
modules to achieve high accuracy). By integrating lightweight
and relatively good ones into our designed framework, it may
achieve even better and more robust performance.

B. Background Estimation

The coarse mask M coar
t coming from segmentation and

matting network tends to be overly smooth. We compute
another foreground mask M spat

t together from the view of
background reconstruction, and use them to supplement the
pixel-level details. We experiment with two simple and effec-
tive background prediction methods: 1) GMM color filtering,
which achieves superior performance on relatively simple
and clean background situations, and 2) traditional region fill
inpainting method to handle arbitrary complex background.
Color Prior Background Estimation. In common drama
studio scenarios, the background is relatively clean (e.g.,
green/white/blue mat). Given a coarse mask of foreground and
background, we set up the color prior as two Gaussian Mixture
Models (GMMs): one is fit for the foreground, and the other
is fit for the background. The probability of each pixel Xt

belonging to the foreground is approximated by

P (Xt) =
Pfg(Xt)

Pfg(Xt) + Pbg(Xt) + ε
, (4)

where ε = 10−6, Pfg and Pbg are the pdf of the foreground and
background GMM respectively. The mask M spat

t at pixel Xt

is set to P (Xt). To reconstruct Bt, we fill the missing pixels
of the background image by the weighted average of Gaussian
means in the background mixture model. We implement the
GMM according to [73], and update its parameters adaptively
at each time t. For better performance, HSV color space is
used here instead of RGB.
Inpainting Based Background Estimation. When the video
resolution is high (1080P) and the background is complicated,
the inpainting region could be very large (sometimes over
80%). It is time-consuming to use deep learning inpainting
methods [65], [74], [75]. We choose a traditional method
region fill [76] finp to inpaint our background. For each frame,

Bt = finp

(
1

w

t∑
t−w

(
1− fdil(M

seg
t )
)
⊗ Ct

)
, (5)

where fdil refers to the dilation function used in auto trimap
generation, aiming to remove noise near the boundary of
M coar

t , w is the length of the temporal sliding window.
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Fig. 2: The pipeline of the proposed automatic video unscreen system. The coarse prediction M coar
t has semantic information but the boundary

is not perfect. The prediction with background information M spat
t provides fine-grained boundary information but is noisy. Integrating them

M ense
t produces a better result. The detailed comparison is shown at the bottom.

Specifically, in static single-shot cases, t − w = 1. This
equation only relies on previous frames, so it is suitable for the
online prediction setting. With the estimated background Bt,
we compute the mask M spat

t using fsub, which is an adaptive
background subtraction function applying on each pixel XC

and XB on the frame Ct and estimated background Bt as

fsub(XC , XB) = min

(
1,
‖XC −XB‖2
δ‖XC‖2 + ε

)
(6)

where δ is a hyper-parameter and we set it to 0.5 in the
experiments, and ε = 10−6. It prevents the subtraction fails
when the foreground or background is black.

C. Final Prediction with Ensembled Mask

An ensembled mask M ense
t is obtained by taking the inter-

section as,
M ense

t =M coar
t ⊗M spat

t . (7)

Considering the intersection and the M spat
t prediction may

result in holes in M ense
t , based on M spat

t , we apply the same
operation as in trimap free matting to get the final alpha matte
prediction αt. The dilation and erosion step will allow the hole
areas to be labeled as uncertain areas in the trimap and filled
by the matting process. Finally, the alpha foreground αt ⊗ Ft

can be calculated from the composition equation (1) explicitly,

αt ⊗ Ft = Ct − (1− αt)⊗Bt. (8)

IV. EXPERIMENTS

A. Experiments Setup

Data. We test all the baseline methods on 1) DramaStudio
dataset and 2) Synthetic-Composite Adobe Dataset [6], [9].

The DramaStudio is for the human-centric common-life green-
screen application scenario with the largest amount of anno-
tated frames compared to existing ones, as shown in Table I.
Among our 420 videos, train and test sets are divided into 381
and 39, respectively. Compared to BGM V2 dataset [10], our
cases are more complicated, including the non-uniform light-
ing and noisy environments. Since SyntheticAdobe [6] only
provides image matting annotation, we follow the evaluation
protocol in BGM [9] and build a video version. Specifically,
for the testing set, there are 11 held-out mattes of human
subjects composed with the 9 background image provided
in [9]. We continuously shift the foreground and keep the
background image still, resulting in 99 testing videos with
∼30, 000 frames in total.
Implementation details. We train these models for 60 epochs
with SGD, where the batch size is 64 and the momentum is
0.9. The initial learning rate is 0.001 and the learning rate is
divided by 10 every 20 epochs. We adopt Deeplab V3+ as the
segmentation network and DIM as the matting network. They
are trained separately since the auto trimap generation is not
differentiable. The label to train segmentation networks comes
from the binarization of annotated alpha matte, i.e., using 128
as the threshold for alpha values ranging from 0 to 255.
Evaluation metrics. We take four commonly used metrics:
SAD error, MSE error, connectivity error, and Miou [9]. All
the video frames are tested under their original resolution, i.e.,
1920×1080 in landscape mode and 1080×1920 in portrait
mode. Since the user-defined trimap is unavailable in our
automatic video unscreen setting, all metrics are computed
over the whole image. This is similar to the evaluation of
foreground composite in [8] but is different from previous
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TABLE I: Dataset comparisons. Frames means effective annotation
frames. Duration is in second. Clips is the number of video clips.

Frames Duration/(s) Clips

SyntheticAdobe [6] 223 - -
VideoMatting [45] 838 35 5
BGM V2 [10] 240,709 10,029 484
DramaStudio 334,402 13,950 420

BGM V2 dataset

DramaStudio

Fig. 3: Samples from BGM V2 dataset and DramaStudio. Our dataset
contains samples with various lighting conditions and inconsistent
environment settings.

matting evaluations that only test on the uncertain region of the
given trimap. Note that Miou needs to binarize the masks before
computing the overlapping areas, so it is not sensitive to subtle
boundary changes. In our evaluation, we mainly consider the
SAD, MSE, and the connectivity error, and take the Miou as a
reference.

B. Comparing Methods

We adapt existing segmentation and matting methods into
the auto unscreen setting, i.e., given a video as the sole
input, the system targets to output the corresponding alpha
foreground video.1

Video segmentation. We test two commonly used SOTA
segmentation methods, the image-based Deeplab V3+ [11] and
the video-based STM [25]. The final foreground comes from
the element-wise multiplication Ft = M seg

t ⊗ Ct. For a fair
comparison, STM is further adapted to a video matting version
STM-Mat after removing the argmax operation in the end to
output a soft 0-1 foreground probability as the prediction.
Video matting. DIM [6], IM [7], AdaM [49], CAM [51]
and FBAM [8] are trimap-based deep matting techniques.
Among them, FBAM predicts alpha and alpha foreground
composite concurrently. We modify them into a trimap-
free matting method by feeding an auto-generated trimap.
LFM [54], HAtt [55], BSHM [56] are trimap-free portrait mat-
ting methods. BGM [9] is a recent trimap-free SOTA matting
method and requires an additional input of the background
image, so we apply our background estimation to provide the
background image to it. All alpha foregrounds are computed
by Equation (8), in which Bt is also the same as what we use
for a fair comparison. 2

For Deeplab V3+ [11], STM [25], CAM [51], FBAM [8]
and BGM [9], we use their original implementations. For

1Existing commercialized software [2], [3] do not support large-scale
calling.

2For FBAM, the alpha foreground αtFt comes from its own prediction.

TABLE II: Overall results. The magnitude of MSE error and Conn
error is 103 while the magnitude of Miou is 10−2.

(a) Results on DramaStudio.

Settings SAD (↓) MSE(↓) Conn(↓) Miou(↑)

DeepLab V3+ [11] 95.67 121.75 132.26 87.75
STM [25] 151.22 201.68 211.84 83.10
STM-Mat [25] 149.66 186.16 208.85 83.12
DIM [6] 92.13 115.52 127.05 88.34
IM [7] 92.63 115.91 127.90 88.28
AdaM [49] 92.35 115.66 127.17 88.81
CAM [51] 92.20 115.91 127.65 88.76
LFM [54] 93.18 117.04 129.04 86.89
HAtt [55] 92.81 116.46 128.16 88.45
BSHM [56] 92.53 116.35 127.90 88.30
FBAM [8] 92.06 115.38 127.23 88.36
BGM [9] 140.65 182.43 198.13 81.76
BGM V2 [10] 93.09 116.48 127.18 87.48

Ours 74.86 81.86 96.61 90.86

(b) Results on SyntheticAdobe.

Settings SAD (↓) MSE(↓) Conn(↓) Miou(↑)

DeepLab V3+ [11] 76.77 101.69 115.74 89.96
STM [25] 248.13 359.73 377.29 71.01
STM-Mat [25] 248.48 342.49 372.77 71.03
DIM [6] 72.44 91.82 106.26 90.76
IM [7] 72.33 94.37 109.16 90.51
AdaM [49] 71.98 95.66 127.17 88.81
CAM [51] 71.60 94.91 107.65 88.76
LFM [54] 72.92 95.04 119.04 86.89
HAtt [55] 71.81 93.46 111.16 88.45
BSHM [56] 72.53 94.35 117.90 88.30
FBAM [8] 71.25 92.38 107.70 90.61
BGM [9] 96.03 129.43 147.85 88.01
BGM V2 [10] 72.32 92.61 109.49 89.49

Ours 69.27 90.01 104.36 90.92

TABLE III: Overall user study results.
(a) Results on DramaStudio.

Ours vs. much better better similar worse much worse

STM [25] 55% 45% 0% 0% 0%
DIM [6] 34% 42% 19% 5% 0%
IM [7] 35% 38% 20% 7% 0%
FBAM [8] 33% 40% 17% 10% 0%
BGM V2 [10] 35% 48% 16% 1% 0%

(b) Results on SyntheticAdobe.

Ours vs. much better better similar worse much worse

STM [25] 42% 38% 20% 0% 0%
DIM [6] 27% 29% 41% 3% 0%
IM [7] 26% 32% 40% 2% 0%
FBAM [8] 24% 28% 43% 5% 0%
BGM V2 [10] 28% 41% 31% 0% 0%

DIM [6] and IM [7], we take the implementation in MMEdit-
ing3, which achieves better performance than the original im-
plementation. We reproduce the methods [49], [55], [56] that
have no publicly available codes. The quantitative evaluation
is conducted on the predicted mask: M seg for segmentation,
and α for matting and our method. The qualitative user study

3https://github.com/open-mmlab/mmediting
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Fig. 4: Overall qualitative comparison among different methods. The first four rows are two examples from DramaStudio, and
the rest four rows are from SyntheticAdobe. Odd rows are predicted alpha mask and even rows are predicted alpha foregrounds.
Best viewed in color.

is conducted on the predicted alpha foreground αt ⊗ Ft. For
any two methods, 10 users are asked to compare 10 pairs of
videos side by side, and each pair of videos is processed by
the two compared methods.

C. Overall Results
The overall quantitative results are shown in Table II, and

the qualitative comparisons are shown in Figure 4. Table III
shows the user study results.

DeepLab V3+ infers each frame independently. We take it
as the baseline since all other methods take the first frame
initialization based on it. STM, as one of the state-of-the-
art video segmentation methods, performs inference as mask
tracking and is very sensitive to temporal inconsistencies. It
tends to fail on fast-moving objects and subsequently fails on
all remaining frames. Thanks to the fine-grained supervision
signal of annotated alpha mattes, STM-mat performs slightly
better than STM. However, both of them are likely to accu-
mulate errors with their memory design due to the lack of
self-correction ability.

The adapted trimap-free version of DIM, IM and FBAM
take the same auto-generated trimap as in BGM, where the
image segmentation initialization comes from Deeplab V3+.
Compared to DeepLab V3+, they improve 3% ∼ 5% on
SAD, MSE, and Conn on DramaStudio. LFM, HAtt and

BSHM show similar results since they are designed for human
portraits and are not good at handling the details.

BGM is a SOTA trimap-free matting approach and requires
a given background. The same background we predict is
provided to BGM. The performance of BGM is inferior to
DIM, IM and FBAM since an estimated background performs
worse than an accurate background image.

With our jointly-solving design, we combine the semantics
of segmentation prediction and the spatial details of back-
ground estimation to get a more accurate alpha foreground.
From Table IIa, we can see that our pipeline achieves the
best result among all with 20% improvement on DramaStudio.
Similar conclusions can be made from the results on Synthet-
icAdobe in Table IIb, and the user study on both datasets in
Table IIIa, IIIb. Qualitative results in Figure 4 also demonstrate
the superiority of our system.

D. Ablation Study
Importance of background estimation. We conduct exper-
iments on two datasets with different background estimation
methods and present the quantitative results in Table IV. Note
that, without background estimation, our method degrades to
DIM [6]. With background information, our method improves
the baseline by a large margin. On DramaStudio, color prior
method gains 10% compared with DIM, which is better than
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TABLE IV: Comparison of different background guidance.

Settings DramaStudio SyntheticAdobe

SAD (↓) MSE (↓) SAD (↓) MSE (↓)

DIM [6] 92.13 115.52 72.44 91.82
BGM V2 + inpaint bg 94.31 116.94 72.32 92.61
BGM V2 + color bg 92.09 115.23 73.76 94.23
BGM V2 + flow bg [65] 83.02 98.65 67.79 90.61

Ours + inpaint bg 86.45 105.03 69.27 90.01
Ours + color bg 74.86 81.86 70.12 90.79
Ours + flow bg [65] 74.82 81.81 68.01 90.79

TABLE V: Comparison of using temporal cues at different module
on DramaStudio. Here F means conducting per-frame inference while
T means using temporal information.

Settings SAD (↓) MSE (↓) Conn (↓)

DIM [6] Seg-F 92.13 115.52 127.05
STM [25] Seg-T 151.22 201.68 211.84
Ours + Seg-F + BG-F 82.30 103.20 111.40
Ours + Seg-T + BG-F 77.26 85.60 100.41
Ours + Seg-T + BG-T 74.86 81.86 96.61

the inpainting method. This is because the GMM modeling
benefits from the statistics of known background pixels when
the background is relatively clean. When the background
is complicated, as in SyntheticAdobe, GMM brings minor
improvements (∼4%) as the background recovery is hard.
Region fill achieves better results since it tends to smooth the
background holes and introduces less noise.

Alternative better background estimation modules are likely
to bring better performance, yet at the cost of efficiency. When
we apply a SOTA deep learning based background estimation
method [65] (flow bg), the performance improves ∼ 1% at
the cost of 3× memory and 10× time consumption. It shows
that with a tailored system design following the composition
equation, our relatively simple background estimations can
bring superior results than others.

Qualitatively, the benefits of background estimation is
shown in Figure 5 and Figure 6. Looking at each frame indi-
vidually, we can find out that the boundary details within the
convex hull are much better, e.g., the insider areas of the girl’s
hair and the arms (see the comparison in Figure 5). Looking
at the video sequence shown in Figure 6, the background
information could provide detailed boundaries that prevent the
masks from exploding even in the presence of fast and large
movements.

Additionally, we compare the byproduct of the proposed
system, i.e., the estimated background, with the background
prediction from FBAM [8] in Figure 7. We can see that our es-
timated background, which considers the temporal consistency
over frames, is visually much better than FBAM.
Effects of temporal consistency. Temporal information brings
consistency over time. In our framework, temporal information
is gathered in two modules, namely the initialization of the
segmentation mask from last frame and the prediction of the
background image.

To study the effects of different temporal cues, we ablate
the modules and report the results in Table V. DIM [6]

Fig. 5: The role of using background image M spat
t at individual

frame level. Best viewed in color with zoom-in.

Fig. 6: The role of using background image M spat
t at video

sequence level. Seg-T is to use temporal information in
segmentation. Seg-T + BG-F is to add per-frame background
image guidance. Best viewed in color with zoom-in.

Fig. 7: Comparison of estimated backgrounds. Best viewed in
color with zoom-in.

is a per-frame inference method without using background
information. Video segmentation STM [25] uses the temporal
information from the previous mask, but it is not robust to
the previous faulty mask. At each step, we not only use
the temporal consistency but also use the spatial information
coming from the background estimation, which is more robust
to fast-moving action/objects. The errors drop by 10% when
we add the per-frame background estimation module (Seg-F
+ BG-F). When we reuse the last frame final prediction in
the segmentation initialization, the performance improves by
5% (Seg-T + BG-F). And when we further update background
information according to the previous frames, the framework
reaches the best results (Seg-T + BG-T).
Effect of connected area filtering. As the unscreen system
may produce noisy masks under complicated scenarios, we
apply connected area filtering to mitigate its bad influence. To
prove its effectiveness, we alter the thresholds in the connected
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Fig. 8: Qualitative comparison on the effects of connected area
filtering. Best viewed in color with zoom-in.

Fig. 9: Qualitative comparison with non-dl green screen soft-
ware DaVinci, where we produce better results. Best viewed
in color with zoom-in.

TABLE VI: Comparison of using different threshold λ for saliency
score St,i at connected area filtering on DramaStudio.

λ 1e-4 5e-4 1e-3 5e-3

76.55 76.98 74.86 75.97

TABLE VII: Comparison on user time cost in second.

Settings DaVinci Ours + Interactive

Single Person (easy) 182 21
Single Person + Object (med.) 251 29
Multiple People (hard) 404 39

area filtering and show the results in Table VI. When is λ is
small, the noise filtering doesn’t contribute, and the SAD error
is 77.91. As we increase the thresholds, the best performance
74.86 comes when λ is at a moderate number 1e−3. A
bigger threshold eliminates every appearing object Oi

t, causing
a performance drop. We also compare the qualitative mask
before and after the connected area filtering, as shown in
Figure 8. It shows that the filtering can effectively remove
the surrounding noise.

E. More Discussions

Comparison with Non-DL methods. As shown in Figure 9,
we further compare our system with non-dl (i.e., non-deep
learning based) green screen software DaVinci without human
intervention. Our method has better performance under the
controlled environment.

To show the effects of these methods in the practical usage
scenario, we invite five professionals to interact with these
methods’ automatically generated results on three groups of
videos. We count the time until the professionals are satisfied
with the results, and report the average time cost in Table VII.
It is found out that by taking our methods as an initialization,

Input Motion retargeting Person replacement
Fig. 10: Video person replacement. The replacement videos
have source video’s background and target generated fore-
ground. Best viewed in color.

combining with interactive methods [77], the professionals
make desired videos 10× faster. As the difficulty increases,
the time consumption increases, but our method can still make
a very quick desired unscreen.
Memory requirements and speed. We test the whole
pipeline, including segmentation, matting and background
prediction, with a 1080P video on a Titan X GPU. The SOTA
method BGM V2 takes 2, 281 MB GPU memory, including
models and data, and runs at 2.1 fps. BGM needs 5, 308 MB,
1.0 fps and FBAM uses 5, 456 MB, 0.6 fps. Ours takes 2, 130
MB and achieves 2.3 fps, using the minimum memory while
maintaining the fastest speed.
Culprit analysis and ethics. Our method is limited to smooth
motion and relatively simple and controlled environments.
Although the system is designed to facilitate the art creation
and production of more high-quality creative user-generated
content, it may also be used as a way to cheat, e.g., to remove
the watermark of some commercial videos. [10]

V. APPLICATION

The proposed high-performance unscreen system can be
applied to human-centric video editing systems in many
ways [78]–[81], such as background replacement [82] and
people retiming [83]. The key to such applications is a highly
accurate separation of foreground and background. For in-
stance, by integrating the estimated backgrounds in our system
with motion retargeting [84], [85], an advanced application:
Video person replacement can be implemented effortlessly.

Existing motion retargeting models generate a fake target
video doing the same action as the source video with a
different background. However, in their original settings, the
target background is fixed to the one in the training data
and needs to be static for better performance. Our video
unscreen technique makes it possible to replace people in
videos with arbitrary backgrounds. As illustrated in Figure 10,
we apply our automatic unscreen framework on both the
original input video and the motion retargeted video, and
separate their backgrounds and alpha foregrounds. To put the
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target person at the same position in the source background, we
calculate the centroid of the foreground person and acquire the
correspondence. With the calculated position correspondence,
the target foreground person can be put in the same position in
the reconstructed source background. Thus a new video from
the alpha foreground of the motion targeting video and the
estimated background of the input video is composed. Video
demos and more details are put in the supplementary materials.

While generating person replacement videos is of great sig-
nificance to enrich user-generated content on social platforms,
it also bears the risk of the manipulation and the creation
of misleading content. Hence, it is of equal importance for
researchers to develop methods [86]–[88] that are able to
clearly distinguish synthetic contents from real-world contents.

VI. CONCLUSION

In this work, we propose an automatic background-free
trimap-free video unscreen system, which unties the coupling
among background and alpha matte, and turns it into a
coarse-to-fine refinement process. The system jointly utilizes
the semantic and pixel-level information and achieves better
performance. We collect a large-scale video mapping dataset
DramaStudio, comprised of real-world application scenarios.
We further show an application on video person replacement
built upon our high-quality video unscreen system.
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