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Jointly Learning the Attributes and Composition of
Shots for Boundary Detection in Videos

Xuekun Jiang, Libiao Jin, Anyi Rao*, Linning Xu, and Dahua Lin

Abstract—In film making, shot has a profound influence on
how the movie content is delivered and how the audiences
are echoed, where different emotions and contents can be
delivered through well-designed camera movements or shot
editing. Therefore, in pursuit of high-level understanding of
long videos, accurate shot detection from untrimmed videos
should be considered as the first and the most fundamental
step. Existing approaches address this problem based on the
visual differences and content transitions between consecutive
frames, while ignoring intrinsic shot attributes, viz., camera
movements, scales, and viewing angles, which essentially reveal
how each shot is created. In this work, we propose a new
learning framework (SCTSNet) for shot boundary detection by
jointly recognizing the attributes and composition of shots in
videos. To facilitate the analysis of shots and the evaluation of
shot detection models, we collect a large-scale shot boundary
dataset MovieShots2, which contains 15K shots from 282 movie
clips. It is richly annotated with the temporal boundary between
consecutive shots and individual shot attributes, including camera
movements, scales, and viewing angles, which are the three
most distinct shot attributes. Our experiments show that the
joint learning framework can significantly boost the boundary
detection performance, surpassing the previous scores by a large
margin. SCTSNet improves shot boundary detection AP from
0.65 to 0.77, pushing the performance to a new level.

Index Terms—Shot type; boundary detection; cinematic style.

I. INTRODUCTION

The storytelling of a movie is heavily determined by its
filming and editing style, where a variety of elements in
film making are consolidated. As the basic unit of movie
construction, shot, which is represented by a series of image
frames that are recorded by a camera at certain times, plays
an important role in delivering the underlying stories.

The ability to detect individual shots from untrimmed long
videos is the first and most important step towards under-
standing movies and appreciating their artistic styles. However,
existing approaches take a simple assumption that the shot
continuity is equivalent to the frame’s visual continuity. They
design hand-crafted features [1]-[4] or take advantage of deep
learning features [5], [6] to detect pixel-level changes and
obtain shots. While these low-level bottom-up features could
handle simple cases where visual information is continuous,
they fail in complex situations, as this assumption on the
equivalence between shot continuity and visual continuity does
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Fig. 1. Prototype demonstration of different shots in terms of camera
movement, scale, and viewing angles, on nine selective categories.

not hold in many real cases. For example, when the camera is
occluded by an object, the visual continuity is broken while
the shot should not be treated as disrupted; Also, when shots
“dissolve”, the adjacent shots are usually overlapped in the
transition moments. Although these shots may share certain
visual continuity, they still should be taken as two different
shots. In both cases, visual continuity and shot continuity
cannot directly imply each other. Using low-level appearance
information among the pixels can instead severely hamper the
performance of successful shot detection.

To seek the answer of what determines the boundary of
two shots, we resort to professional filming theory in cin-
ematographic art [7] and start from the birthplace of the
shot boundary. We find out that filmmakers follow certain
editing theories, such as time/space ellipsis, match, montage,
to connect different shots. The adjacent shots usually vary in
attributes such as camera movement, scale, and viewing angle,
as illustrated in Figure 1.

Inspired by this observation, we take the advantage of these
intrinsic shot features to aid shot detection from videos. We
propose a new framework to accurately detect shot boundary
by jointly learning the attributes and composition of shots,
believing that the understanding of shot attributes will con-
tribute to the shot boundary detection. A preliminary version
of this article has appeared in [8]. In that work, we collected
a dataset MovieShots for shot type recognition and designed a



subject guidance network to classify shot movement type and
scale type. In this paper, our extensions include: 1) SCTSNet,
a novel joint classification and temporal segmentation network
for shot boundary detection; and 2) a large-scale MovieShots2
dataset, which extends the original MovieShots dataset [8] to
a video scene setting, where each shot is annotated under the
content of their affiliated movie scenes, thus individual shot
can also be jointly studied with its adjacent shots within the
same story plot. We provide accurate shot boundary annotation
and introduce more shot attributes annotation including shot
camera movement, scale, and viewing angle. The experiments
show that SCTSNet greatly improves the shot detection perfor-
mance comparing to existing methods [9]-[13] and can handle
more complicated scenarios with ease.

The rest of this paper is organized as follows: a brief
background on related work about shot boundary detection
is provided in section II. Section III introduces MovieShots2
dataset in details, including its collection and basic statistics.
Section IV explains our joint classification and temporal
segmentation framework (SCTSNet) in detail. Experiments are
conducted to validate our framework in section V. Finally, we
provide a conclusion of this work.

II. RELATED WORK
A. Shot Attributes and Categories

Shot is the fundamental unit of video, which is a sequence of
continuous images taken from a camera, from the moment that
the camera starts rolling until the moment it stops. Most related
works on shot studies mainly focus on two shot attributes:
scale and movement types. Early works like [1] classified the
shot scale type based on human-defined rules based on the
ratio of the face box and the height of the frame. Conventional
methods for video shot type classification use SVM with
low-level texture features, color region, histogram or optical
flow [5], [14]-[16]. Wang ef al [17] redefined seven shot
movement types based on camera motion and camera distance,
and use probabilistic distance, motion descriptor and attention
descriptor to classify them with SVM. Bhattacharya et al [18]
focused on camera motion. It used homographic and Lie
algebra to describe the motion type. With the development
of deep learning, some researchers introduced deep learning
methods into shot scale classification. Lin et al [19] introduced
deep neural networks to classified shots in concert videos,
extract features from VGG16 net [20].

Inspired from filming theories [7], we study three basic
attributes camera movement, shot scale and viewing angle,
which describe a shot from different perspectives comprehen-
sively: 1) Camera movement explains how a shot is filmed;
2) Shot scale represents what content a shot has; 3) Viewing
angle determines where a shot is viewed from. We include
these three attributes in our MovieShot2 annotation and ex-
plicitly model these attributes in SCTSNet to improve the shot
representation.

B. Shot Boundary Detection

Early traditional methods are based on hand-craft features
to represent visual contents, such as pixel [21], edge [2],

texture [3] and color [22]. These features are sensitive to
local changes in the frame, such as rapid motion. In order
to solve these problems, researchers further proposed a block-
based interframe comparison method. Some global features
are also used to represent inter-frame differences, such as
color histogram [4]. However, the histogram feature is also
sensitive to image brightness. Later, local feature descriptors
such as SIFT and SURF are applied to shot boundary detection
algorithm. In [23], SIFT features of boundary frames were
used to identify cut transition and gradual transition. Baber et
al [24] proposed a shot detection framework based on entropy
and SURF. In [25], SURF features, RGB histogram and RBG
pixel value are combined to conduct shot boundary detection.
In addition to inter-frame differences, some researchers took
advantage of the characteristics of continuous frames. Lu et
al [10] transform the input shot into a matrix, decomposed the
shot matrix with SVD, and made the final prediction. Yuan et
al and Luo et al [26], [27] construct a shot graph and detect
the shot boundary with graph cut.

With the later development of deep learning, researchers
introduce deep neural networks to solve the shot boundary de-
tection problem. Wu et al [11] apply 3D convolution network
to solve the classification problem of gradient shot. Xu et al
and Tong et al [12], [13] introduced a convolution network
to extract video frame features. Most applications of deep
networks follow the three steps defined by [26].

Two main disadvantages are noticed in existing works. First,
low-level bottom-up features only have poor representation to
shot. Second, most of those works didn’t consider the temporal
feature of a shot. In this work, we propose an end-to-end net-
work that takes in video shots, learns the relationship between
adjacent shots in a long-term video clip, and finally outputs the
shot boundary predictions. To get better shot representation,
we focus on three shot attributes: camera movement, scale,
and viewing angle, and introduce a comprehensive network to
learn different shot attributes.

C. Video Temporal Feature Extraction

Various video studies have emerged recent years, such
as action recognition [28], [29], person search [30], video
scene temporal segmentation [31], video caption [32]-[34],
and video generation [35]. There are three network structures
that are widely used to extract video temporal features in
recent studies. Tran et al and Carreira et al [36], [37] proposed
3D convolution, and indicates that 3D convolution has a better
representation for video data. 3D convolution obtains state of
the art performance in many video applications, e.g., video
description generation [38], action detection [39] and video
classification [40]. Other studies used convolution network and
Recurrent Neural Network (RNN) to extract video temporal
features. The convolution network generated feature vectors
for each frame, and then a sequence of feature vectors of each
video clip was fed into a temporal model such as LSTM, GRU
to make the final prediction. Venugopalan et al [41] trained
an end-to-end video description model using CNN and LSTM.
Lu et al [42] used SSD to extract the object of each frame,
and applied LSTM to extract the temporal feature. Donahue et



Fig. 2. Examples on the five shot scale types.

Fig. 3. Examples on the three viewing angle types.

al [43] adopted CNN and LSTM to extract video features. The
third method is based on sampling, e.g., TSN [44] extracted
temporal feature by slice sampling. In this work, we follow
the sampling strategy in TSN [44] to improve computational
efficiency. We extract shot features and feed them into a
sequence model for the downstream boundary detection task.

III. MOVIESHOTS2 DATASET

To facilitate the joint study shot attributes and the compo-
sition of shots. We collect MovieShots2, a shot boundary de-
tection dataset with richly annotated shot types. MovieShots2
contains 15,091 shots collected from 282 movie clips. Each
shot has three attributes, they are 1) camera movement, 2)
scale, and 3) viewing angle.

To our best knowledge, MovieShots2 is the first large-
scale video shot datatset with complete shot attributes anno-
tation including movement, scale and angle. Compared with
our last work MovieShots [8], this version has two major
improvements: 1) It contains more granular categories from
9 classes to 16 classes. Borrowing the professional domain
knowledge from the film industry [7], we add a new shot
attribute angle and further divide certain categories that have
significantly more samples than other categories into more
granular categories. Specifically, motion shot are specified as
pan, follow and crane-up 2) The annotation is based on the
shots within a scene context instead of independent shots,
which can further support the study of adjacent shots and their
joint effects in conveying a complete story scene. The details
of this dataset are specified as follows.

A. Dataset Collection

To build such a large-scale shot detection dataset has
two main challenges: shot segmentation and shot annotation.
Considering that high-quality movies contain rich shot type
usage and shot transition scenarios, we firstly collected 15

Static shot
- the camera is fixed with no
movement or rotation;

Zoom-in shot
- the camera gradually approaches
the subject;

Zoom-out shot
- the camera gradually moves away
from the subject;

Pan shot
- the camera rotates horizontally
or vertically;

Track shot
- the camera moves in the
horizontal direction;

Follow shot
- the camera keepsrelative
movement with the subject;

Crane-up shot
- the camera moves up vertically
withoutrotation;

Crane-down shot
- the camera moves down
vertically without rotation.

Fig. 4. Examples on the eight shot movement types.

top-rated movies from IMDB as the pilot trial. However, to
annotate a hours long movie is extremely time-consuming.
It is even difficult for annotators to keep concentration in
the whole process, which will diminish the quality of the
annotation. To ease the difficulty, we firstly divided each
movie into many minutes-long video clips with a complete
story plot according to script and synopsis, and conduct
annotation on these short clips. Meanwhile, we provide coarse
initial boundaries for annotators using a traditional off-the-
shelf shot detection algorithm [9]. This helps the annotators to
improve efficiency on the per-frame annotation process. The
annotators only need to check each shot, correct the faulty
detected boundaries, and mark the boundaries that have not
been identified by the shot detection algorithm. The whole
annotation process is supervised by professional director and
workers in the film academics and industry. Before the formal
annotation phase, we designed a test phase that standardized
annotators’ criteria on each shot type to ensure consistency.
Each shot is labeled with three rounds of annotation and the
dataset finally reaches a high consistency of 90%.

B. Shot Categories

In this work, we study three shot attributes, namely, the
movement, scale, and angle, each with 8, 5, 3 types respec-
tively. See Figure 2, 3, 4 for illustrated examples.

Movement attribute describes the movement state of the
camera. Movement attribute can to divided into eight types:
1) In Static shot, the camera is fixed with no movement or
rotation, driving the audiences’ attention to the characters; 2)
The camera gradually approaches the subject in Zoom-in shot,
while (3) gradually moves away from the subject in Zoom-
out shot; 4) In Pan shot, the camera rotates horizontally or
vertically, showing the audiences different parts of a large
scene; 5) Track shot is recorded from a camera moving on
a track, where the camera moves in the horizontal direction;
6) Follow shot, the camera keeps relative movement with the
subject; 7) Crane-up and 8) Crane down shots gradually lift



TABLE I
COMPARISON OF DIFFERENT SHOT BOUNDARY DATASETS

‘ # Shot Boundary Scale Angle Movement

Unified 2005 [45] 430 v

TRECVID 2007 [46] 2463 v

Soccer 2009 [47] 1838 v

Taxon 2009 [17] 5054 v
Content 2011 [14] 3206 v

Lie 2014 [18] 327 v
MovieShots [3] 46857 v v
MovieShots2 15091 v v v v

Fig. 5. Statistics of MovieShots2. The pie graphs show the distribution of
categories within each shot attribute. The histograms show the distribution of
shot duration and drama style among 282 movie clips.

up/down to show/leave the whole scene, where the camera is
placed on equipment and move upward/downward.

Scale attribute is usually determined by the portion of the
subject figure that is included within the frame. It has five
types: 1) Extreme close-up shot (ECS) shows the details of
the object or human body; 2) Close-up shot (CS) always be
used to show the actor’s facial expression; 3) Medium shot
(MS) contains a figure from the knees or waist up; 4) Full
shot (FS) barely includes the human body in full; 5) Long
shot (LS) is taken to show a large space from a long distance

Angle attribute refers to the angle between the camera and
the filmed objects. It marks the specific location at which
the camera is placed to take a shot with three main types:
1) Eye-level shot is taken at the same height as the human
eye and there is no obvious emotional tendency; 2) In High-
angle shot and 3) Low-angle shot, the height of the camera is
higher/lower than the height of the human eye. While high-
angle shot always provides an omniscient view to audiences,
low shots usually express strong emotions.

C. Dataset Statistics

The comparison between MovieShots2 and existing shot
datasets [8], [14], [17], [18], [45]-[47] is shown in Table I. '
We compare against the total number of annotated shots, as
well as their supported annotations on different shot attributes.

Note that, the previous dataset MovieShots is specifically
designed for shot type classification. The data is collected from
movie trailers and each shot is independent with each other.
MovieShots2 instead focuses on the video scene setting where
each shot is annotated under the content of movie scenes.
Therefore, each individual shot can also be jointly studied with
its adjacent shots within the same plot.

MovieShots2 is large and comprehensive, containing more
than 15k shots. It is annotated with detailed shot type cate-
gories, i.e., 8 movement types, 5 scale types and 3 angle types.
Each shot is connected with a movie clip that may help the
study of the relationship between scene and shot. Furthermore,
our new dataset is also of great diversity. Figure 5 shows
some basic statistics of MovieShots2. The shot categories
distribution corresponds to the natural distribution in real films
and the shot length distribution covers a wider range. Shots
coming from 282 movie clips differ in their drama style, e.g.,
edificatory, drastic, or funny, containing rich shot types and
shot transition styles, which is crucial to learn a robust shot
detection model.

IV. SHOT CLASSIFICATION AND TEMPORAL
SEGMENTATION NETWORK

Inspired from the editing theory that adjacent shots in a
video usually belong to different types, we propose a new
framework Shot Classification and Temporal Segmentation
Network (SCTSNet) for video shot boundary detection. The
overall framework is shown in Figure 6. The core idea of
our framework is to simultaneously determine the attributes
of a shot and the boundary between two shots in a video.
SCTSNet is composed of three main parts: 1) multi-attribute
feature extractor &, 2) shot types classification network F, and
3) video temporal segmentation network 7 . Given a video clip,
we first perform average sampling to get selective keyframes
at a regular interval. The sampled frames are then fed into
the extractor to provide shot intrinsic features, i.e., movement,
scale and angle with the supervision coming from the shot type
classification network. The features coming from a sequence
of frames are further fed into a multi-temporal-scale sequential
network to predict the shot boundary in a context.

A. Multi-attribute Feature Learning

As we discussed before, the visual appearance change is not
the essential reason for the existence of shot boundary. The
intrinsic shot features, viz., movement, scale, angle, instead are
the keys for a video editor to decide two shots. To overcome
the shortcomings of low-level features, we take the three
classification supervisions coming from the movement, scale,
and angle types to acquire a better shot feature representation.

IThe comparing datasets are accessed on Oct. 10, 2020.
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Fig. 6. The pipeline of shot classification and temporal segmentation network (SCTSNet). The number 1 between two clips represents there is a boundary

and vice versa.

Given a video, we split it into several clips at regular inter-
vals. The interval is set to be half a second in our experiment.
The choice comes from the observation that almost all the
shots last for at least one second long, and the attributes
and contents of a clip generally do not change much within
this short time interval. A dense sampling will not affect
performance, but increase the computation cost. The central
frame is then selected to represent each individual video clip.

A video with a sequence of N frames is denoted as
V =[L,I5,-,IL - ,Iy]. Each frame I; is fed into three
feature extractors to handle movement, scale, and angle at-
tributes respectively. Since the three aspects affect in different
perspectives, they are expected to function in an independent
fashion. The three feature extractors are trained separately
to avoid different attributes to affect each other. Specifically,
considering the characteristics of different shot attributes,
there are two types of extractors that we used here. Since
3D convolution network can better model temporal features
between frames, we use I3D [37] to extract the movement
feature, and use ResNet50 [48] as the extractor for scale and
angle features. The extractor module £ outputs the features,

ft:g(It):(ff’on7fta)’ (1)

for each frame I;. We use ¢ denotes the frame index, and use
subscripts s, m, a to distinguish three shot attributes.

B. Multi-temporal-scale Sequential Modeling

After acquiring the multi-attribute features { f; }, we propose
a multi-temporal-scale sequential model to handle different
shot transition scenarios, e.g., fade-in/fade-out and cut-in/cut-
out cases. > We detect the boundaries by incorporating more

2Fade/cut-in/out means that there is a gradual or abrupt frame appearance
change between neighboring shots.

contextual information and fusing different time-range scale
information to improve its robustness.

Since a shot boundary connects two adjacent visual frames,
the contextual information in the neighboring timestamps
are also important to the boundary detection. We apply a
sequence-to-sequence model LSTM [49] here to maintain con-
textual information while keeping the computation efficient.
Fix index ¢ and the half window size w, the shot boundary
detection problem is now turned into the task of predicting a
sequence binary labels through the network 7. Formally,

bt,’w = [btfun e )bt7 e 7bt+’w71]7
ft,w:[ftfwa"'7fta"'vft+w]a 2
bt,w = T(ft,w)v

where b, € {0, 1} indicates whether there is a shot boundary
(i.e., the shot transits) between the ¢-th and (¢ + 1)-th frame.
Consider that in certain shot transition scenarios, e.g., cut-
in/out is abrupt while fade-in/out is smooth and lasts for a
longer time, the required time-range reception field is different.
The prediction is instantiated with a multi-temporal-scale
network, which is composed of multiple sequential models
with different reception fields. Each model 77;@ receives a
specific kind of feature information, viz, scale, movement and
angle, from a reception field of length 2kw, where w is the half
window size, 1 < k < K, attribute type i € Z = {m, s,a},
and outputs the central 2w prediction scores as follows,
[pt—w’ e 7pt+w71] = kw([ft—kwa e 7ft+kw])7 (3)
where pi’k € [0, 1] represents the probability of shot boundary
existence.
The final prediction of multi-temporal-scale sequential mod-
els are assembled as a weighted sum over multi-attribute level



and multi-temporal-scale predictions,

K
by=0 (Z by uwi‘”‘) : (4)
i€l k=1
We choose K = 2, w = 5 in our experiments, and o is a
binarization function with threshold 0.5. Specifically, uj is
the weight to ensemble the prediction from different temporal
scale model, which is set to 0.9 for the long model and 0.1
for the short one. \; is the weight to ensemble the results
of different shot attributes, which represents their respective
contributions to the boundary detection. The weights of move-

ment, scale and angle are set to 0.7, 0.2, 0.1 respectively.

C. Joint Shot Type Classification and Temporal Segmentation

Using the supervision from shot boundary alone is too weak
to support the learning of shot attributes, therefore, we provide
additional supervision to learn the shot type classification and
temporal segmentation jointly. A shot type classifier head F is
appended after the feature extractor £. The total loss is defined
as follow,

L=alys+ 5£seg7 (5
with
M,
Las=— > > wijlog(aiy), ©

i€{m,s,a} j=1
Eseg = —(ylog(q) + (1 - y)log(l - q))a
where y is a binary indicator to show whether the class label is
the correct classification, ¢ is the predicted probability, M; is

the number of classes for attribute i, & and [ are the weights
for the two term respectively.

V. EXPERIMENTS
A. Experiments Setup

Dataset. All the comparing methods are conducted on our
MovieShots2 dataset and TRECVID 2007 [46]. MovieShots2
is split into Train and Test sets with a ratio of 7:3, as shown
in Table II. Some basic statistics, e.g., the ground truth shot
number, average shot number and average frame number are
also presented. As TRECVID 2007 dataset doesn’t provide
a training set and shot type annotation, it is taken as an
additional evaluation set to compare all methods.

Implementation details. We take the cross-entropy loss for
the classification. We train these models for 100 epochs with
mini-batch SGD, where the batch size is set to 64 and the
momentum is set to 0.9. The network weights are initialized
with pre-trained models from ImageNet [50]. The initial
learning rate of 7 is 0.001. The learning rate of £ and F is
100 times lower than the one of 7. All the learning rate will
be divided by 10 at the 30th and 80th epoch. The experiments
are trained with 32 Tesla K80 16GB using PyTorch.

Evaluation metrics. We take three commonly used metrics:
1) Average Precision (AP): specifically in our experiment, it
is the mean of AP of b, = 1 for each movie clip. 2) Miou: a
symmetric measure based on intersection over union to assess
the quality of detected shots. 3) Accuracy (Acc): the accuracy
of the binary classification of b,.

TABLE 11
STATISTICS OF THE MovieShots2 DATASET

| Train  Test  Total
Number of clips 225 57 282
Number of shots 11944 3147 15091
Avg. shots of each clip 53 55 54
Avg. frames of each clip | 5652 5040 5532

B. Overall Results

We reproduce existing methods [10]-[12], [26], [51], [52]
according to their papers since their codes are not publicly
available. PerframeContent [9] is experimented with using
their provided original code repository.

a) Analysis of Overall Results: The overall results are
shown in Table III. Traditional methods [9], [51], [52] make
boundary prediction based on the difference between two
adjacent frames and the frames are represented by hand-
craft features. Additionally, such methods rely on predefined
thresholds, making it sensitive to the local changes of pixels
within the frames. Although these methods achieve better
performance compared to the random baseline in terms of
accuracy, they still create a large number of wrong boundaries,
which is reflected from the lower recall. To better depict the
relationship among frames, some other methods, e.g., Graph
and SVD [10], [26] model the frame sequences into a graph
or a matrix, but the performances of these methods are still
not satisfactory. Deep learning methods [1 1], [53] use 2D/3D
convolution neural networks to represent shot features and
detect shot boundary. A better representation ability helps
these networks achieve better results than traditional methods.

Our full model SCTSNet (full, mf + mt), explicitly learns
the boundary prediction by using the multi-attribute feature
and multi-scale-temporal sequence model. It achieves the best
result among all the competing methods and improves the AP
from 0.65 to 0.77 (relatively 20%) compared to the SOTA
methods [11], [53]. Similar conclusion can be made from the
results on TRECVID 2007 [46], as shown in Table IV.

b) Analysis of Our Framework: Our base model of SCT-
SNet (base) uses a single shot attribute extractor (movement)
and a single sequential model (K = 1). The base model SCT-
SNet (base) is comparable to traditional methods. As we add
multi-attribute feature learning to it, the performance is greatly
improved, the AP raises from 0.60 to 0.69 (relatively 15%),
and M;,,, improves from 0.72 to 0.77 (relatively 7%) and Acc
increases from 89.67 to 91.89 (relatively 2%). With the help
of multi-temporal-scale sequential model, the SCTSNet (+ mt)
improves the AP from 0.60 to 0.75 (relatively 25%) and Acc
from 89.67 to 93.82 (relatively 5%). Finally, the full model
SCTSNet (fill, mf + mt) achieves the best result with higher
AP (0.77), M;,, (0.78) and accuracy (94.11), which shows
the effectiveness of multi-attribute feature learning and multi-
scale-temporal designs.

C. Ablation Studies

Four ablation studies on different module designs are pre-
sented to show their effectiveness: 1) different attribute learn-



TABLE III
RESULTS ON MOVIESHOTS2. HERE MF MEANS MULTI-ATTRIBUTE
FEATURE AND MT MEANS MULTI-TEMPORAL-SCALE SEQUENCE MODEL

Settings | AP Moy Acc
Random \ 0.19 0.30 50.49
Histogram, Boreczky et al [51] 0.50 0.71 84.63
RegionHistogram, Boreczky et al [51] | 0.59 0.70 90.71
Block, Hanjalic et al [52] 0.60 0.68 92.00
PerframeContent, Brandon ef al [9] 0.57 0.71 85.29
Graph, Yuan ef al [26] 0.17 0.35 78.33
SVD, Lu et al [10] 0.27 0.16 87.68
2D-CNN, Zhao et al [53] 0.65 0.64 93.86
3D-CNN, Wu et al [11] 0.64 0.66 93.38
2D-CNN (+ mf), Zhao et al [53] 0.66 0.67 94.11
3D-CNN (+ mf), Wu et al [11] 0.68 0.71 94.27
SCTSNet (base) 0.60 0.72 89.67
SCTSNet (+ mf) 0.69 0.77 91.89
SCTSNet (+ mt) 0.75 0.73 93.82
SCTSNet (full, mf + mt) 0.77 0.78 94.11
TABLE IV
RESULTS oN TRECVID 2007
Settings | AP Moy Acc
Histogram, Boreczky et al [51] 0.14 0.11 94.12
RegionHistogram, Boreczky et al [51] | 0.31 0.54 92.83
Block, Hanjalic et al [52] 0.42 0.73 94.57
PerframeContent, Brandon et al [9] 0.39 0.55 87.56
SVD, Lu et al [10] 0.18 0.25 94.00
SCTSNet (full, mf + mt) \ 0.57 0.79 94.43

ing, 2) different temporal relationship, 3) different extractor
backbone, and 4) joint learning.

1) Different Attributes Learning: We testify the perfor-
mance of SCTSNet with different shot attributes, as shown
in Table V. When we only use one of the shot attributes
(the first three rows in the table), we can find out that the
movement attribute information is the most useful attribute for
shot boundary detection, followed by the scale type, and then
the angle type. We conjecture that this is due to the reason that
movement has more granular categories than the others. It has
eight types, while scale has five types, and angle has only three
types. Attributes with high granularity categories guide the
network to have a better ability to distinguish the differences
between the two adjacent shots. Overall, with the help of
more shot attribute categories, the performance is gradually
improved. From SCTSNet (scale) to SCTSNet (movement +
scale), the AP improves from 0.44 to 0.62 (relatively 41%)
and M;,,, from 0.58 to 0.74 (relatively 28%). From SCTSNet
(movement + scale) to the full model, SCTSNet (movement +
scale + angle), the AP raises relatively 11% and M;,,, improves
relatively 4%.

2) Different Temporal Relationship: To show the effec-
tiveness of our video temporal segmentation network 7, we
conduct study on 7 from two perspectives: network structure
and temporal reception field. Results are shown in Table VI.
In the first three settings, we study different temporal sequen-

TABLE V
THE EFFECTS OF DIFFERENT ATTRIBUTE LEARNING

Move. Scale Angle | AP Moy Acc

v 0.30 0.46 69.61

v 0.44 0.58 84.26

v 0.60 0.72 89.67

v v 0.45 0.61 83.96

v v 0.60 0.71 89.61

v v 0.62 0.74 90.69

v v v ‘ 0.69 0.77 91.89
TABLE VI

THE EFFECTS OF DIFFERENT TEMPORAL RELATIONSHIP

# | Temporal reception field | 10 20 40 | AP Moy
1 | LSTM (base) | v | 0.60 072
2 | Transformer [54] v 0.53 0.66
3 | Bi-LSTM [55] v 0.59 0.72
4 | LSTM (base) v 0.66 0.73
5 | LSTM (base) 0.70 0.74
6 | LSTM (mt) v v 0.76 0.74
7 | LSTM (mt) v v 0.75 0.73
tial models, including our LSTM, Transformer [54] and Bi-

LSTM [55], with the same temporal reception field, i.e., take
10 consecutive shots as input and predict the 9 boundaries
among them. The baseline LSTM (base) is a single LSTM with
512 hidden dimensions using the movement attribute only. In
Bi-LSTM setting, the hidden dimension is set to be 256. In
Transformer setting, the input dimension is set to 1024, the
number of heads in the multi-head-attention models is set to
8 and the number of sub-encoder-layers in the encoder is set
to 6. From the experiment results, we can find out that the
baseline single LSTM shares similar results with Bi-LSTM.
However, Transformer achieves worse results as it may suffer
from overfitting. Therefore, we choose the simple and efficient
structure LSTM as our base model.

Furthermore, in the settings 1, 4-7 in Table VI, we study
the performance of 7 under different time-range reception
field. Specifically, in time range 10, 20, 40 settings, we test
on predictions on the central 9 boundaries. We observe that
when the time-range reception field increases from 10 to 40,
the AP improves from 0.60 to 0.70 (relatively 16%), which
shows that a larger temporal reception field helps to improve
the performance. When we use multi-temporal-scale sequential
model LSTM (mt), we find out that by adding a shorter
temporal reception field’s model, the performance improves
about 10%, e.g., AP increases from 0.66 to 0.76 comparing
with the 4-th row and 6-th row, from 0.70 to 0.75 comparing
with the 5-th row and 7-th row. The combination of temporal
reception field 10 + 20 is also much better than a single 40
time range, comparing with the 5-th row and 6-th row. These
prove the effectiveness of our multi-temporal-scale design.

3) Different Extractor Backbone: We compare the effects of
different extractor backbone and show the results in Table VII.
To illustrate the impact of the effects of different backbone
more clearly, we conduct an ablation study on the SCTSNet (+



TABLE VII
THE EFFECTS OF DIFFERENT EXTRACTOR BACKBONE

. Boundary e
Settings detection Type classification
Move.  Scale  Angle | AP M;,, | Move. Scale Angle
Res50  Res50  Res50 | 037 0.55 4335 68.86  72.94
13D 13D Res50 | 0.56  0.69 71.50  60.55 7294
13D Res50 13D 0.65 076 71.50  68.86  52.01
13D Res50 Res50 | 0.69  0.77 7150 68.86 72.94
TABLE VIII
THE EFFECTS OF JOINT TRAINING
Boundary detection Type classification

Settings AP M;ou Acc Acc

separate | 0.26 0.34 72.00 60.55

joint 0.60 0.72  89.67 71.50

mf) with a single LSTM model that sets its temporal reception
field as 10. Two backbone ResNet50 [48] and I3D [37] are
tested.

SCTSNet (+ mf) is shown in the fourth row, where we apply
I3D as the movement backbone, ResNet50 as the scale and
angle backbones. When we compare the first and the last rows
of Table VII, we can find out that the 3D convolution network
brings significant improvement on the boundary detection
(AP improves from 0.37 to 0.69) and the movement type
classification (Acc improves from 43.35 to 71.50). This can
be ascribed to better temporal representation ability of the 3D
convolution network, which is exactly what the movement
prediction needs. Comparing the second and fourth rows of
the performance on scale attribute, ResNet50 achieves better
results on boundary detection (relatively 23%) and scale type
classification (relatively 13%) than I3D. Similar observations
can be found from the experiments on the angle attribute.
This may due to the reason that in the scale and angle feature
learning, the spatial representation is more important than the
temporal representation, which makes 2D networks to be more
suitable here.

4) Joint Learning: Our SCTSNet has three parts, attributes
feature extractor £, shot types classification network F and
video temporal segmentation network 7. These three parts are
jointly trained together in our framework. To study the effects
of different training processes, we compare the performance
of separate training and joint training in Table VIII. We take
the movement attribute extractor along with a 10 time-range
LSTM as the base model. In SCTSNet-separate, we first
train the £ and F with the shot type classification loss. And
then we fix £ and train the 7 with boundary annotation. In
SCTSNet-joint, £, F and 7 are jointly trained together. The
joint training brings significant improvements on boundary
detection (AP increases from 0.26 to 0.60 and M,,,, increases
from 0.34 to 0.72), and shot type classification (Acc increases
from 60.55 to 71.50, relatively 18%). The results indicate that
positive synergy exists between these two tasks, and proves
the effectiveness of joint training on boundary detection.

TABLE IX
COMPARISON ON TIME AND SPACE COST

Settings | FPS  Model size AP

2D-CNN, Zhao et al [53] | 555 112.09 MB  0.65

3D-CNN, Wu ef al [11] 121  249.65 MB  0.64

SCTSNet (base) 489  256.06 MB  0.60

SCTSNet (full, mf + mt) 405  576.06 MB  0.77
TABLE X

THE EFFECTS OF DIFFERENT SAMPLING INTERVALS

Interval(s) | 1 3/4 172 1/4 1/8 1/24
AP 051 055 060 060 061 0.62
M;ou 043 0.65 072 071 072 0.72

5) Time and Space Cost: We conduct experiments on a
90-minute movie with 129,600 frames using one Tesla K80
GPU. All the methods use the 0.5 seconds sampling strategy
for a fair comparison. The time and space cost comparison
is shown in Table IX. The reported frames per second (FPS)
is the quotient of the total processing time divided by the
total frames. Although our full SCTSNet achieves better
performance at the cost of larger time and space complexity,
SCTSNet stays at a practical usage level with a speed above
400 FPS and the model size less than 1 GB. It takes about
5 minutes to test on a 90-minute long movie using all the
modules.

D. Different Hyperparameters

1) Sampling Intervals: To study the effects of different
sampling in splitting videos, we differ the sampling intervals
on our base model and report the results in Table X, consider-
ing the FPS of the videos is 24. We find that 1/2 second
sampling interval outperforms 1 second sampling interval
relatively 18% on AP and relatively 67% on M;,,. Starting
from 1/2 second sampling interval, the performance doesn’t
improve too much as the sampling becomes denser, even if we
use every frame with the 1/24 second sampling. It shows that
1/2 (0.5) second sampling interval servers as a good balance
between the performance and the computation cost.

2) Ensemble Weights: We differ the weights A; and py in
Equation (4) of the full model SCTSNet (full, mf + mt). \;
and pj are the weights to ensemble the results of different
shot attributes and temporal scale models respectively. The
results are shown in Table XI and Figure 7. It is observed
that the larger A,, uses, the better the performance is. The
best performance achieves when the weights are set to A, :
As : Aq = 0.7:0.2:0.1. As for the choice of puy, recall that
w = 5, we will use two temporal reception field 10 and 20
when K = 2. The sum of y is set to be one. When y; = 0.00
and po = 1.00, the model degrades to SCTSNet (+ mf) with
w = 10 and K = 1. As p; increases, the performance first
rises and then drops. It achieves the best when the weights pq
and po are set to be 0.10 and 0.90.



TABLE XI
THE EFFECTS OF \;, {m, s, a} REFER TO MOVEMENT, SCALE AND ANGLE

A As Xa | AP Moy Acc
020 040 040 | 0.64 051  89.11
040 030 030 | 074 068 9294
060 020 020|076 072 9343
070 0.5 015|076 072 93.44
060 030 010 | 076 072 9355
070 020 0.0 | 076 073  93.49
080 0.0 0.0 | 0.75 0.73  93.48
1
Acc
g8 09
g
£
g 03
& AP
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Fig. 7. The effects of pj on performance where K = 2 and 1 + p2 = 1.

E. Qualitative Results

In this section, we present the qualitative results to show
the effectiveness of multi-attribute feature learning. We also
analyze the error cases and imply some future directions.

1) Multi-attribute Feature Learning: In Figure 8, we visu-
alize the effects of different attributes to illustrate how they
contribute to the prediction of the shot boundary. In the first
two cases Figure 8, we can see that different shot attributes
contribute differently. While a single attribute can not convey
most situations, due to the variety of shot transitions, multi-
attribute can better help the network to identify the boundary.
In the last two cases in Figure 8, the appearance difference
among adjacent shots is subtle. With the recognition of shot
attributes changes, these two cases could be successfully
handled. Compared to the traditional methods using hand-
crafted features and empirical thresholds, the multi-attribute
features used in our SCTSNet are complementary to each other
and help the shot boundary detection.

2) Error Case Analysis: Although our framework can work
very well in most of the cases, there are still some hard cases
that existing methods and our method cannot deal. In the two
cases shown in Figure 9, although the appearance/brightness
of the frames changes significantly, they are single shots. But
all the methods will falsely cut the shot into several pieces.
The reason is that the first case in Figure 9 is a long take,
where both appearance and shot attributes change significantly.
The foreground in the second case in Figure 9 is too big
and results in the false prediction on shot attributes. How to
solve these shots remains our future work. We conjecture that
visual information only may not be enough to make the right
decision. Multi-modal features, e.g., audio or text, might help
with these cases.

M

Fig. 8. Qualitative results of different shot attributes in shot transformation
from movie Kill Bill (2003), Iron Man (2008) and X-Man: Days of Future Past
(2014). Each shot is represented with two frames. Three colors correspond
to three attributes, where blue is camera movement, red is scale and green is
angle. The rectangle length of each attribute is its softmax score to represent
its effects in determining a shot boundary.

Fig. 9. (Top) The shots have complex camera movement and actors perfor-
mance with long duration from movie X-Man: Days of Future Past (2014).
(Bottom) There are moving objects that occupy most of the space in the frame
from movie Kill Bill (2003).

VI. CONCLUSION

This paper proposes a joint learning framework to detect
shot boundaries in videos. Inspired by the professional filming
theory in cinematographic art, instead of only focusing on
the boundary visual difference, we resort to the analysis of
the shot attributes and contents. A joint classification and
temporal segmentation network (SCTSNet) is proposed to
segment shot by learning multiple shot attributes and utilizing
multi-temporal-scale information. To support the study on it,
we collect a large-scale video shot boundary and attribute
dataset MovieShots2, which contains 15091 shots coming from
282 movie clips. With detailed experiments, the proposed
framework achieves better results than existing methods and
proves the effectiveness of every design.
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